Boosting Variational Inference

نویسندگان

  • Fangjian Guo
  • Xiangyu Wang
  • Kai Fan
  • Tamara Broderick
  • David B. Dunson
چکیده

Modern Bayesian inference typically requires some form of posterior approximation, and mean-field variational inference (MFVI) is an increasingly popular choice due to its speed. But MFVI can be inaccurate in various aspects, including an inability to capture multimodality in the posterior and underestimation of the posterior covariance. These issues arise since MFVI considers approximations to the posterior only in a family of factorized distributions. We instead consider a much more flexible approximating family consisting of all possible finite mixtures of a parametric base distribution (e.g., Gaussian). In order to efficiently find a high-quality posterior approximation within this family, we borrow ideas from gradient boosting and propose boosting variational inference (BVI). BVI iteratively improves the current approximation by mixing it with a new component from the base distribution family. We develop practical algorithms for BVI and demonstrate their performance on both real and simulated data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variational Boosting: Iteratively Refining Posterior Approximations

We propose a black-box variational inference method to approximate intractable distributions with an increasingly rich approximating class. Our method, variational boosting, iteratively refines an existing variational approximation by solving a sequence of optimization problems, allowing a trade-off between computation time and accuracy. We expand the variational approximating class by incorpor...

متن کامل

Boosting Variational Inference: an Optimization Perspective

Variational inference is a popular technique to approximate a possibly intractable Bayesian posterior with a more tractable one. Recently, boosting variational inference [20, 4] has been proposed as a new paradigm to approximate the posterior by a mixture of densities by greedily adding components to the mixture. However, as is the case with many other variational inference algorithms, its theo...

متن کامل

Operator Variational Inference

Variational inference is an umbrella term for algorithms which cast Bayesian inference as optimization. Classically, variational inference uses the Kullback-Leibler divergence to define the optimization. Though this divergence has been widely used, the resultant posterior approximation can suffer from undesirable statistical properties. To address this, we reexamine variational inference from i...

متن کامل

Two Methods for Wild Variational Inference

Variational inference provides a powerful tool for approximate probabilistic inference on complex, structured models. Typical variational inference methods, however, require to use inference networks with computationally tractable probability density functions. This largely limits the design and implementation of variational inference methods. We consider wild variational inference methods that...

متن کامل

Truncation-free Stochastic Variational Inference for Bayesian Nonparametric Models

We present a truncation-free stochastic variational inference algorithm for Bayesian nonparametric models. While traditional variational inference algorithms require truncations for the model or the variational distribution, our method adapts model complexity on the fly. We studied our method with Dirichlet process mixture models and hierarchical Dirichlet process topic models on two large data...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1611.05559  شماره 

صفحات  -

تاریخ انتشار 2016